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Teachers’ Mathematics: A Collection of
Content Deserving to Be a Field'

Zalman Usiskin, University of Chicago
A Mathematics Teacher Needs to Know Mathematics

Let’s begin with a truism. To teach well, a teacher of mathematics should know a
great deal of mathematics. The higher the level taught, the more the teacher needs
to know. For a teacher of middle school or high school mathematics, this means
knowing a good deal of algebra, geometry, analysis, statistics, number theory,
computer science, and mathematical modeling. This mathematics constitutes the
traditional background of a teacher who is considered to be well-prepared
mathematically.

In recent U.S. National Assessment data at the 8th grade level (Hawkins,
Stancavage, & Dossey, 1998), students of teachers with a mathematics major or
minor performed higher than students of teachers who had not majored or minored
in mathematics. There are important reasons beyond student performance why
teachers need to know more advanced mathematics: one of the main reasons we
teach mathematics is to prepare students who need to have an advanced knowledge
of mathematics for their careers. Teachers need to know the various ways in which
the mathematics they teach is applied later and to distinguish those ideas that are
fundamental from those that are enrichment. Deductive proof and statistical
inference have some similarities, but also they have some fundamental differences.
The discrete mathematics used in computer science is different from the
mathematics covered in most engineering courses. And teachers need to know the
different ways in which people who use mathematics approach problems.

Even though taking more and more mathematics would not seem to have any down
side, it can create a problem. Often the more mathematics courses a teacher takes,
the wider the gap between the mathematics the teacher studies and the mathematics
the teacher teaches. The result of the mismatch is that teachers are often no better
prepared in the content they will teach than when they were students taking that
content. A beginning teacher may know little more about logarithms or factoring
trinomials or congruent triangles or volumes of cones than is found in a good high
school text. Furthermore, there is a good deal of mathematics that teachers need to
know that, for reasons I will explain below, they never encounter. It may be
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because of this mismatch that some studies have found that the number of
mathematics courses taken by a teacher does not influence the performance of the
students of that teacher.

The question is how to describe this mathematics, which 1 call
teachers 'mathematics because it is particularly important for teachers to know.
Some colleges identify it by the corresponding course the teacher teaches, such as
teachers’ algebra, or teachers’ geometry, or calculus for teachers. These names
have the advantage of being attractive to anyone who is teaching those courses in
schools. But they have several disadvantages. They hint that the teacher probably
does not know that mathematics well. Because there are other courses in algebra
and geometry at most colleges, identifying a course as being “for teachers”
suggests that the teachers’ version is weaker. Finally, simply saying that a course is
for teachers does not indicate why it is for teachers nor tell you what in the course
makes it appropriate for teachers.

Obviously, whatever name is given to the course is not important compared to what
is in it. I would like to argue that a teacher needs at least three kinds of
mathematics not found in typical college mathematics courses. The remainder of
this article will elaborate on what these are.

Mathematical Generalizations and Extensions

The first kind of mathematical knowledge needed by teachers consists of
extensions and generalizations of the content of school mathematics. For instance,
1
as we all know, the area of a triangle can be found by the formula A = 3 bh, where
b is the base and h is the height of the triangle using that base. This is the most
commonly taught formula for the area of a triangle even though the height of a
triangle is not one of the sides or angles of a triangle, not one of the parts of a
triangle used to prove congruence.

Almost all high school geometry textbooks, including UCSMP Geomefry, mention

a second formula, Hero's formula A = -\] s(s—a)(s-b)(s—) , which has the advantage
of giving a ftriangle's area in terms of its three sides. Hero's formula is rather
difficult to prove. For this reason, a proof of Hero's formula is seldom found in
today's books even when the formula is presented.

Quite a bit less known, because trigonometry is studied after geometry, is that

5 1 X : .
another area formula for a triangle is A = 3 ab sin C. We have this formula in
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Functions, Statistics, and Trigonometry (UCSMP, 1998). This gives the area of a
triangle in terms of two sides and an included angle. From this formula, it is easy
to prove that the maximum area of a triangle with sides of known lengths a and b is
when they are legs of a right friangle. We can think of Hero's formula and the

formula A =% ab sin C as SSS and SAS area formulas. They motivate us to look

i : : 1
for an area formula for a triangle given AAS or ASA. One such formulais A =3

2
zsinBsinC

a SIm(BC) I leave the proof for you.

What benefit is there in knowing these formulas? This knowledge changes our
view from A = % bh as the formula for the area of a triangle or the most important

formula to one of many formulas for the area. Knowing many formulas shows how
the different combinations of elements that determine a triangle can be employed to
determine its area. It gives us another reason to learn some trigonometry. This
knowledge piques our curiosity for still more formulas. My own favorite triangle

C . X 4 v
, where R is the radius of the circle containing the three

area formula is 4 =

vertices of the triangle.

These triangle area formulas exrend typical content. Now for an example of
generalizing content. A number of properties as well as inequalities that students
typically learn separately are used in solving equations. For all real numbers a, b,
and c:

e Addition Property of Equality: a=b <a+c=b+c.

e  Multiplication Property of Equality: Ifc #0,then (a=b <> ac=bc). (Andc #
0 is necessary!)

e  Squaring non-Property (!): If you square both sides of an equation, or take the
square root of both sides of an equation, you may gain or lose solutions.

e Cubing: a=b<ad=b3

e Exponential Equations: Ifc>0,then(a=b<cd= cb).

e Trigonometric Equations: If 0 <a <90°and 0 £b <90°, then (sin a=sin b <
a=Db) and (cos a = cos b & a = b), but one of these is not true if 0 <a < 180°
and 0 <b < 180°.

In words, we say that you can add the same number to both sides of an equation, or
multiply both sides of an equation by the same non-zero number, and the resulting
equation is equivalent to the given one. But if you square both sides of an equation,
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you may gain solutions. And cubing both sides of an equation does not affect the
solutions. These results, which may seem to students to be inconsistent, suggest
other questions. Does taking the log of both sides affect solutions to an equation?
What about taking the sine of both sides? How can one tell, in general, whether an
operation applied to both sides of an equation will change the solutions to the
equation?

The answer to this question is found by considering an equation in one variable as
being of the form f(x) = g(x). This is an idea found in UCSMP Precalculus and
Discrete Mathematics. Applying an operation to both sides is like applying a
function h to both sides. This results in the equation h(f{x)) = h(g(x)). A general
theorem regarding equivalent sentences follows.

On a particular interval, the equations f(x) = g(x) and h(f(x)) = h(g(x)) are
equivalent if and only if on that interval h is a one-to-one function on the ranges of
f(x) and g(x).

Examining this theorem and its special cases unifies the solving of equations and
gives new insight into the process of equation-solving.

The corresponding general theorem for inequalities explains not only when
inequalities are equivalent but also why the sense of the inequality changes at some
times but not at others.

On a particular interval, f(x) < g(x) is equivalent to h(f(x)) < h(g(x)) if and only if
on that interval h is an increasing function on the ranges of f(x) and g(x). f(x) <
g(x) is equivalent to h(f(x)) > h(g(x)) if and only if on that interval h is a decreasing
function on the ranges of f{x) and g(x).

These are only a few of the many theorems that extend or generalize properties that
students are expected to know. A whole host of natural generalizations are found
in abstract algebra, and many years ago I wrote some articles about them (Usiskin,
1975). They are typically not encountered by teachers in their college mathematics
courses because college mathematics courses tend to look ahead to what is needed
for graduate school rather than look back to what would be helpful in
understanding pre-college mathematics.



90 Teachers' Mathematics: A collection of content to be a Field

Concept Analysis

A second kind of mathematics that a teacher needs to know can be described as
concept analysis. Those teaching from any of the UCSMP texts see concept
analysis in the form of the SPUR” model for understanding. For instance, in
Transition Mathematics we present not only the properties of each of the four
fundamental operations, but also the real-world situations they model, and
representations such as the coordinate plane for the size change model for
multiplication. We begin UCSMP Geometry with the properties and
representations for several manifestations of points and lines, derived from a
concept analysis of those basic elements.

Concept analysis includes alternate definitions or conceptions of mathematical
ideas and their consequences, why the concepts arose and how they have changed
over time, and the range of applications of the concept. Concept analysis helps
teachers to help students understand new ideas. For instance, a view of powering
as repeated multiplication is insufficient to handle the zero power, non-integer
rational powers, or negative powers. Without a broader view of the concept of
powering and its purpose, properties are merely memorized and not assimilated by
students.

Concept analyses also provide responses to questions that learners have about what
they are learning. Probably every teacher in this room has been asked to explain
why the repeating decimal 0.99999... = 1. Sometimes this question is asked
because students have an inkling that the explanation will take you off the subject
of the day. And it usually does. A common explanation uses the Multiplication

1
Property of Equality. Start with 0.33333.. = 5 Now multiply both sides by 3.
On the left side, you get 0.99999..., and on the right side you get 1. Voila!

If students appreciate this argument, they do not always show it. Instead, one
student exclaims: “But 0.99999... is less than 1.” So you now appeal to the
Trichotomy Property of the Real Numbers and their density (without describing or
naming either property). Two numbers are either equal or one is less than the
other. We agree that 0.99999... is not bigger than 1. Now if 0.99999... is less than
1, then there must be a number in between them. But there is no number in
between them, so 0.99999.., cannot be less than 1.

? The four dimensions of understanding in the SPUR approach are: Skills, Properties, Uses, and
Representations.
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You see glassy stares. Undaunted, you go on, using algebra. Let's suppose that we
do not know the value of 0.99999.... So we let x = 0.99999... Then 10x =
9.99999... So, subtracting the first equation from the second, 9x = 9.00000.... So x
= 1. This explanation may be beyond the students, but now they begin to realize
that you have many arguments, and they start to believe that 0.99999... may in fact
equal 1 because you said so.

You are not finished. You decide to get directly to one meaning of infinite
decimal, as a limit of finite decimals. You point out that 0.9, 0.99, 0.999, ... are all
less than one, but they are getting closer and closer to the number 0.99999... You
show this on the number line, and point out that 0.99999... is the limit of this
sequence of finite decimals. You use the opportunity to point out that every infinite
decimal is a limit of a sequence of finite decimals. And in this case the limit is 1.

If the question comes up after you have studied geometric series, then you have still
another opportunity to examine this infinite repeating decimal. Now you view the
infinite decimal as a sum. 0.9 + 0.09 + 0.009 + ... is the sum of a geometric series
with first term a = 0.9 and constant ratio r = 0.1. In general, the sum of such a

i 5ot o 08 09
series is 7= , 80 here the sum is 101 00
help students who have not seen some of the other explanations, but it does show
the consistency of mathematics and helps to give closure on the idea. This is
teachers’ mathematics.

= 1. This last explanation does not

Our knowledge of concepts changes over time. Negative numbers are an everyday
occurrence with temperatures, altitudes above and below sea level, time before and
after, scientific notation, assets and debts, scores above and below par in golf, and
so on. Yet even some notable mathematicians had great trouble with negative
numbers. Augustus de Morgan, the logician and algebraist who lived from 1806 to
1871, centuries after negative numbers had been accepted by the mathematical
community, still argued that a person only got a negative number as a solution to an
equation if the equation was incorrectly set up. He illustrated this with the
following problem: A father is 56 years old and his son is 29. When will the father
be twice as old as the son? Let x be the number of years from now, we obtain 56 +
x = 2(29 + x), and so x = -2. This is easily interpreted as a negative number of
years from now, so a positive number of years ago. But de Morgan viewed this
solution as absurd, and argued that the variable was incorrectly identified, and
should have been the number of years ago, with 56 — x = 2(29 — x) as the equation
(Featherstone, 2000).

Similarly, some contemporary mathematicians have views of algebra so narrow
that they do not realize the broad range of applications of the subject. They, like
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many teachers, would benefit from a course that analyzes concepts for the variety
of their meanings, unlike other courses which assign a meaning early and then are
restricted to what can be deduced using that conception.

Problem Analysis

A third kind of mathematics needed by teachers but rarely encountered by them,
and different from concept analysis, is the analysis of problems. Teachers who are
the coaches of mathematics teams and good students on these teams can be quite
proficient at this kind of analysis. Problem analysis involves more than finding
different ways of solving a problem. It includes looking at a problem after it has
been solved and examining what has been done. Will the method of solution work
for other problems? Can we extend the problem? And so forth.

Let me begin with a typical problem found in algebra books:

Jane has an average of 87 after 4 tests.
What score does she need on the 5th test to average 90 for all five tests?

To answer this question, the algebra student is expected to let a variable, such as x,

874 +x
stand for Jane’s score on the 5th test and to solve ————— = 90. But many

students will use arithmetic, working somewhat as follows. To average 90 points
on 5 tests means to have 450 points. Jane has 348 points, so that she needs 102
points. The algebra parallels this. Solving the equation, we find that x = 102, so
that if the last test only allows 100 points, she cannot average 90. Students who see
the arithmetic solution will naturally wonder why algebra is needed, and they are
right because it is not needed for that problem.

But when we inquire into the relationship between Jane’s score on the 5th test and
her average, we cannot avoid algebra. Let A equal Jane’s average for all 5 tests.

348+ x

A ZT. If we think of x as the domain variable and A as the range
variable, this is a linear function with slope ; It indicates that each point Jane

gets on the 5th test adds — to her average. We can use this equation to determine

what Jane needs to obtain any given average, not merely the average of 90. The

348 + x ) _
graphof A = T shows all the possible solutions.
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The problem analysis could end there, except that one important aspect of this
analysis is to relate this problem to similar problems. The linear equation shows
that this situation is a constant-increase situation. Each point Jane eamns on the 5th
test adds the same amount to her average.

And now we extend the problem. In April, 1998, the basketball players Michael
Jordan and Shaquille O'Neal were vying for the season individual scoring title in
the professional National Basketball Association. The scoring title is won by the
player with the highest average per game played. At the beginning of the day,
Michael had 2313 points in 81 games, for an average of 28.6 (customarily, averages
in newspapers are rounded to the nearest tenth). Shaq had scored 1666 points in 59
games, for an average of 28.2 points. With one day left in the season, no one else
had a chance to win the title.

Most sports fans know that the average number of points per game is calculated by
dividing the total number of points by the number of games. With this knowledge,
it is easy to try out various scenarios. Just estimate how many points Jordan and
Shaq score in their last game, and then calculate, on the basis of those guesses, who
will win the scoring title. These calculations require only arithmetic. If there were
only a couple of possibilities for the numbers of points scored, this arithmetic
would give you rather quickly all of the possible outcomes. But there are many
possibilities: Each player might reasonably score any number of points from 10 to
60. For this reason it is useful to consider all the scenarios at one time, and algebra
is needed.

If Jordan scores j points in his last game, then he has a total of 2313 + j points in 82

games, for an average of 2313+/ points = Similarly, if s is the number of points
82 game
Shagq scores in his last game, he will then have 1666 + s points in 60 games, for an

1666 + s points
average of 50 game

. Consequently, Jordan wins the scoring title whenever

2313+ 1666+s
82 60

On the other hand, Shaq wins the scoring title whenever

2313+j _ 1666+
82 60

I have time only to outline what can be done with this problem.  First, we must
ask what it means to solve inequalities like these? We cannot simply say j equals
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this and s equals that, because there are infinitely many solutions even if one of the
variables is fixed. So we graph the boundary to the inequalities. That is the line
with the following equation:

2313+)  _ 1666 +s

82 60

_ ) ) 30/ +1084

Solving for s in terms of j, s = ——,
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Each of the points on the line has meaning. If Jordan scores 0 points, Shaq still
needs to score over 26.44 points to win the title. That is, he needs 27 points or
more. If Jordan scores 1 point, Shaq needs over 27.17 points — 28 points or more —
to win. If Jordan scores 30 points, Shaq needs 49 points or more. We see that the
lattice points above the line in the first quadrant offer all the possible ways in which
Shaq wins. The lattice points below the line in the first quadrant show all the
possible ways in which Jordan wins.
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It happened that Jordan scored 44 points in this last game of the regular season.
When j = 44, s = 58.63..., which meant that Shaq had to score 59 points in his last
regular season game to win the title. That is, Shaq would need a personal record
for him to win the scoring title. Shaq scored 39 points, which is terrific scoring, but
was not good enough to win the scoring title.

I want to take the analysis one step further. In the Jordan-Shaq situation, two
players are vying for the better average at the end of the season, rather than one
student wondering what her test average would be. Suppose we let f(j) = Jordan’s
average if he scores j points in the last game, and g(s) = Shaq’s average if he scores
2313 +j
82

. The equation of the line is when the two averages are the same, that is, it

s points in the last game. Above we showed that f(j) = , and g(s) =

1666 + s

60
is 1(j) = g(s). Since g is a linear function, it has an inverse, and so g'lo f(j) = g-lo
_30j+ 1084

g(s)=s. Thatis,s= g-lo f(j). Thus the equation that we graphed, s = T

is the equation of g-lo £

Notice the meaning of g-lo f. The function f maps Jordan’s last game points onto

Jordan’s season average. The function g maps the number of points Shaq gets in
the last game onto his average for the season. If the season averages are to be

equal, then g'l is mapping Jordan’s average onto the number of points Shaq needs

to get that average. Thus the function g_lo f maps the number of points Jordan

scores in the last game onto the number of points Shaq needs to have the same
average as Jordan. In this way, function composition and function inverses both
generalize and provide an explanation for a common algebra problem.

Teachers' Mathematics

Mathematical generalizations and extensions, concept analysis, and problem
analysis together comprise a substantial body of mathematics that arises from
teaching situations in much the same way that statistics arises from data, financial
mathematics arises from investment problems, operations research arises from
optimization problems in business, and actuarial science arises out of questions of
msurance. [ call this body "teachers' mathematics". Teachers' mathematics
includes:
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explanations of new ideas,

alternate definitions and their consequences,

why concepts arose and how they have changed over time,

the wide range of applications of the mathematical ideas being taught,

alternate ways of approaching problems, including ways with and

without calculator and computer technology,

how problems and proofs can be extended and generalized,

e how ideas studied in school relate to ideas students may encounter in later
mathematics study, and

e responses to questions that learners have about what they are learning.

Teachers' mathematics includes some of what some educators have called
pedagogical content knowledge, and much more because it includes a lot of
mathematics that is not at all pedagogy. A course in teachers’ mathematics is not a
methods course, though it may suggest mathematical methods of approach to
topics.

There is a huge amount of material that falls under this heading. However, this
material is usually picked up by teachers only haphazardly — through occasional
articles in journals, by attending conferences, by reading the teachers' notes found
in their textbooks, or by examining research in history and conceptual foundations
of school mathematics. This mathematics is often not known to professional
mathematicians. It covers both pure and applied mathematics, algorithms and
proof, concepts and representations. The only way we will get this material to our
teachers on a broad scale is if "teachers' mathematics" obtains its own place in the
curriculum.

Teachers' mathematics is not merely a bunch of mathematical topics that might be
of interest to teachers but a coherent field of study, distinguished by its own
important ideas: the phenomenology of mathematical concepts; the extended
analyses of related problems; and the connections and generalizations within and
among the diverse branches of mathematics. Teachers” mathematics is a branch of
applied mathematics, applied because it emerges directly from problems in the
classroom. Teachers’ mathematics comes out of the teaching and learning of
mathematics. The importance of teachers' mathematics thus goes well beyond the
need of teachers to include all those who study the learning of mathematics and the
mathematics curriculum.

Like other branches of applied mathematics, teachers' mathematics uses only a part
of all known mathematics, and favors certain areas. Number theory, geometry, and
the foundations of mathematics are important to teachers' mathematics in the same
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way that probability is important to actuarial science and graph theory is important
in operations research. Also, like other branches of applied mathematics,
knowledge in non-mathematical areas is very helpful. Thus, just as a financial
analyst needs to know about the various investment possibilities available, a person
studying statistics needs to know about sampling and the construction of tests, a
teacher needs to know about learning theory, student motivation, and the effects of
schooling and testing on student learning.

Teachers' mathematics encompasses a broad range of mathematics. It should
include concepts from all the mathematical sciences that pertain to a given idea. Its
essence is shaped by the various ways to approach a concept and by various ways
of solving problems. It is the antithesis of a narrow research field.

During the past eighteen months UCSMP has been working under a grant given to
the University of California at Berkeley mathematics department by the Stuart
Foundation of San Francisco to develop a course in teachers' mathematics for high
school teachers (Usiskin, Peressini, Marchisotto, & Stanley, 2001). As we have
been developing this course, we have more and more realized that one course
merely touches the surface. In fact, the material that we thought would be a little
more than for one course already seems to be enough for two college courses. Yet
we have not even touched many important areas of high school mathematics. For
this reason, we have a proposal in to continue this work on a second and third
course. Even so, our first experiences suggest that college mathematicians teaching
our materials may be unaccustomed to courses with such breadth.

Our thinking about teachers’ mathematics is not new. Mathematics courses for
teachers have existed throughout the century. In the mathematics departments of
most teacher-training instifutions, there are courses especially designed for
teachers. But it is almost always the case that no two of these courses are alike.
Courses for mathematics teachers are mostly filled with material that is the hobby
of their instructors.

What I think may be new in this work is our view of teachers' mathematics as a
branch of applied mathematics, our view that this branch of mathematics is not
watered-down content but more appropriate content, and our view that the body of
knowledge represented in teachers' mathematics is huge and deserving of attempts
by individuals and groups to structure it. In the past, we have often organized
mathematics course programs for teachers by selecting those that seem to be most
beneficial out of the vast array of courses offered for future pure and applied
mathematicians. As I noted earlier, teachers need to take some of these courses,
but at least as important is the need to take a number of mathematics courses that
start from the ground up, from the problems faced in the classroom.
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We all know that teaching mathematics is not easy. While some college professors
may think that all that is needed to get students to understand a new theorem is to
display a coherent logical argument proving the theorem, any school teacher knows
that this is not the case. Students connect ideas in different ways, and the
thoughtful teacher needs to know multiple pathways that students can take through
the material. Many students enter college liking mathematics and thinking about
teaching it as a career but are subsequently turned off because the mathematics
courses they take are not related to the mathematics they liked in high school.
Though it is not easy, teachers enjoy teachers’ mathematics because it is related to
their work. By closing the gap between coursework and profession, we will
increase the amount of mathematics that teachers take, we may increase the
popularity of the major in mathematics teaching, and we may be able to make some
headway into the shortage of mathematics teachers being trained.
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